

PII: S0040-4039(96)02299-X

Angustimaline, an unusual nitrogenous compound from Alstonia angustifolia

Toh-Seok Kam*, R. Jayashankar, Kooi-Mow Sim and K. Yoganathan

Department of Chemistry, University of Malaya, 59100 Kuala Lumpur, Malaysia.

Abstract: An unusual nitrogenous compound probably derived from a macroline-type precursor was obtained from the stem-extract of Alstonia angustifolia. Copyright © 1996 Elsevier Science Ltd

Alstonia angustifolia is a tree widely distributed in Southeast Asia. Its alkaloidal content has been investigated previously and is known to provide a number of indole alkaloids including dimeric indoles¹. A particularly notable feature of the alkaloidal composition of this plant is the preponderance of the macroline unit. We would like to report the isolation of an unusual C-13 nitrogenous compound, angustimaline, isolated from the stem-bark extract of this species².

Angustimaline 1 was obtained in amorphous form, [α]_D 115° (CHCl₃, c 0.1). The UV spectrum shows a maximum at 257 nm (log ϵ 4.11) while the IR spectrum showed bands for hydroxyl (3417 cm⁻¹), α , β -unsaturated carbonyl and enol ether (1614, 1644 cm⁻¹). The EIMS of 1 showed a molecular ion at m/z 237, the odd mass indicating the presence of a single nitrogen (C₁₃H₁₉NO₃). Other significant fragment peaks were observed at m/z 193 (M - CH₂=CHOH, base) and 150 (M - CH₂=CHOH - CH₃CO). The ¹H NMR spectral data (Table 1) showed the presence of a low field one H singlet at δ 7.52 attributable to a vinylic-H associated with a vinyl ether function, an *N*-methyl singlet at δ _H 2.49 and another methyl absorption due to an acetyl group at δ _H 2.16. The ¹³C NMR spectrum (Table 1) indicated the presence of a ketonic carbonyl due to the acetyl group (δ _C 196.2), a two olefinic carbons associated with an enol ether function (δ _C 121.3 and 157.5) and an oxymethylene at δ _C 67.1. These, together with the two methine resonances at δ _C 23.4 and 37.4 are in good agreement with the E-ring of a typical type-B macroline¹ and suggested an early comparison with

macroline-type alkaloids such as alstophylline 2 which was also isolated from the plant. The 13 C NMR spectrum also indicated the presence of an oxymethine and full analysis of the NMR data employing COSY, HETCOR, HMBC and NOE-difference experiments furnished structure 1 for angustimaline. The connectivity is supported by the COSY spectrum which confirmed the H-coupling network of structure 1. The stereochemistry of the 4-OH is deduced to be α since irradiation of H-4 resulted in enhancement of the H-7 β signal. Other key NOE interactions (NMe-H2 α /H5 α ; H6 α -H5 α /H9 α) are consistent with the stereochemistry of the molecule as shown in 1. The structure of angustimaline 1 shows that it retains all the features of the non-indole portion of a type-B macroline unit except for the presence of an additional, oxygenated carbon. It is probably derived from fragmentation of a macroline-type precursor, possibly alstophylline 2 (which also occurs in the plant) or its oxindole.

Table 1. ¹H and ¹³C NMR Spectral Data for 1^a

Position	δн	$\delta_{\rm C}$	Position	$\delta_{ m H}$	$\delta_{\rm C}$
	3.28 br d (6)	64.3	8	1.61 m	37.4
3α	2.28 ddd (14, 7, 3)	39.1	9β	4.06 ddd (12, 4, 1.5)	67.1
3β	2.12 dd (14, 7)	-	9α	4.28 t (12)	_
4	4.60 dd (7, 3)	76.4	10	2.16 s	25.0
5	3.02 m	71.1	11	-	196.2
6β	2.05 ddd (13, 7, 3)	33.6	12	-	121.3
6α	1.38 td (13, 3)	-	13	7.52 s	157.5
7	2.55 m	23.4	<i>N</i> Me	2.49 s	43.2

^a CDCl₃, 270 MHz; assignments based on COSY, HETCOR, HMBC and NOE.

Acknowledgements: We would like to thank the University of Malaya and IRPA for financial support.

References and Notes

- Ghedira, K., Zeches-Hanrot, M., Richard, B., Massiot, G., Le Men-Olivier, L., Sevenet, T. and Goh, S. H. Phytochemistry, 1988, 27, 3955.
- Other alkaloids found besides 1 were alstophylline, 19,20-dehydro-10-methoxytalcarpine, villalstonine, affinisine and normacusine-B. Isolation of alkaloids was carried out under mild conditions involving cold EtOH extraction, partitioning into dilute acid and SiO₂ chromatography.

(Received in UK 31 October 1996; accepted 22 November 1996)